EE 330

Homework 7 Spring 2024

Due Friday, March 1 at 12:00 noon

Unless stated to the contrary, assume all MOS transistors have model parameters $\mu_n \text{Cox}=100\mu\text{A}/V^2$, V_{Tn}=0.75V, μ_n/μ_p =3, V_{Tp}=-0.75V, Cox=4fF/ μ^2 , λ = 0, γ = 0 and all BJT transistors have model parameters $J_s \text{A}=10^{-12} \text{ A}$, β_n =100, and β_p =30. If any other parameters are needed, consult the parameter list appended to this assignment.

Problem 1 Analytically determine the quantities indicated with a "?".

Problem 2 Determine W so that $V_{OUT} = 6V$

Problem 3 Determine the maximum value of R₁ that will keep M₁ in saturation. M₁ has dimensions W=12 μ and L=2 μ . Assume the voltage V_{IN}(t) is at 0 V DC.

Problem 4 Consider the following circuit. Determine the output voltage if $V_{DD}=3V$, $V_{SS}=-2V$, $W_1=8\mu$, $L_1=2\mu$, $W_2=50\mu$ and $L_2=2\mu$. Assume the magnitude of the input is arbitrarily small.

Problem 5 Find V_{OUT} for V_{DD} =10V, R_1 =5K, R_2 =10K, R_3 =2K, R_4 =90K assuming the transistor is minimum sized in a process that uses the same design rules as the ON 0.5 μ CMOS process that has been used in laboratory experiments.

Problem 6 Consider the following circuit (remember to use the model parameters given at the top of this assignment).

- a) Determine V_{OUT} if V_{IN}=0V
- b) If V_{IN} is a square waveform going between 0V and 0.1V, the output will also be a square wave. Determine the output waveform for this small square wave input.
- c) This circuit serves as an amplifier and the gain can be defined to be the ratio between the peak-to-peak value of the output to that of the input. What is the gain of this amplifier with the 0.1V p-p square waveform at the input?

Problem 7 Consider the following inverter. Determine the switch-level model for this inverter that includes the input capacitance and the pull-up and pull-down resistors if V_{DD}=3.5V..

Problem 8 Determine the output voltage for the following circuits.

Problem 9 & 10 Implement an 8 to 3 encoder and 3 to 8 decoder, both with an active low enable pin, using Verilog. When the encoder/decoder is disabled, its output should be low. Design a testbench proving function using Verilog. Submit module code, testbench code, and Modelsim waveforms.

Passive Process Parameters for CMOS Process											
	N+	P+	POLY	POLY2	HR P2	M1	M2	M3	N/PLY	N W	UNITS

DECICEANICEC	1										
RESISTANCES											
Sheet Resistance	84	105	23.5	999	44	0.09	0.10	0.05	825	815	Ohms/sq
Contact Resistance	65	150	17		29		0.97	0.79			Ohms
CAPACITANCES											
Area (substrate)	425	731	84			27	12	7		37	af/μm²
Area (N+ active)			2434			35	16	11			af/μm²
Area (P+active)			2335								af/μm²
Area (POLY)				938		56	15	9			af/μm²
Area (POLY2)						49					af/μm²
Area (metal 1)							31	13			af/μm²
Area (metal 2)								35			af/μm²
Fringe (substrate)	344	238				49	33	23			af/μm
Fringe (poly)						59	38	28			af/μm
Fringe (metal 1)							51	34			af/μm
Fringe (metal 2)								52			af/μm
Overlap (N+active)			232								af/μm
Overlap (P+active)			312								af/μm